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I'kTIONA 

THE EFFECT 

TUNNEL-WALL,

L ADVISORY COMMITTEE FOR AERONAUTICS 

ADVANCE RESTRICTED REPORT 

OF COMPRESSIBILITY ON TWODIMENSIONAL 

INTERFERENCE FOR A SYMMETRICAL AIRFOIL 

By Gerald E iht zbei g 

SUMMARY 

The effective change in the velocity of flow past a 
wing sectiqnj caused by the presence of wind-tunnel walls, 
is known .Th.r potential flow. This theory is extended by 
inetigtionof the twodimensionàJ compressible flow 
pat	 thin Rank i ne Oval. it is shown that for a symmet-
rical section at zero angle of attack the velocity incre-
ment due to the tunnel walls in the incompressible case 
must be multiplied by the factor 1/1M'2 to take account 
of compressibility effects. The Mach number, M, corre- 
sponds to conditions in the wind-tunnel test section with 
the model removed.

t. 
INTRtDTJCTION 

Present day high-speed operation of wind, tunnels 
renders it important to study the effects of compressibil-
ity on the tunnel-wall interference. Several studies of 
the two-dimensional inviscid compressible flow in an in-
finite stream over sections derivable from a circle have 
been made. Two recent papers have demonstrated a method 
for extending these studies to flow 'sounded by a channel. 
Ernest Lamla (reference 1) . considered the incompressible 
potential flow past a circular cylinder in a channel as 
a first order approximation and used the Janzen--Rayieigh 
method to find the compressible-inviscid flow past the 
circular cylinder in a channel. Von Hantzsche and Wendt 
(reference 2) have extended Lam1as study to the special 
family of ellipses in a channel having a maximum incom-
pressible velocity past their surface equal to twice the 
free stream velocity. 

These special cases are far removed from the usual 
conditions of wind-tunnel experimentation. A Rankine Oval 
having a thickness ratio comparable to a symmetrical
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airfoil section gives a reasonable representation of the 
effects of profile thickness on the tunnel-wall velocity 
corrections for-an airfoil. ' A. Page (reference 3) reports 
the solutionby Sir Richard Giazebrook,of -the incompres-
ible p otential flow over a Rankine Oval in a- channel. 
The present report-takes-this solution as a first order 
app roximation and applies an analysis paralleling that of 
Lamla's to find, the'  
flow past a thin Rankine Oval in a channel. 

THEORY 

In the Jaiizen-R.yleigh method (reference 1), the 
general stream function, and : 	 the velocity V at 

- any point in the flow, isepressed -a. an infinite series 
function of the- free stream Mach number M. (co ,rre-s-pon-d. 
in to the free stream veJ.ocity V1, as 

-M'	 -	 -	 - --	 - 

--	 - so that	 --	 -	 - -	 ---	 -------:	 -- - 
-----'.	 -	 -	 - 

--	 Ir \	 \ -  
K	

2	 -- 

	

(_!.	 =K= 2	 M 

where	 - 

	

--	 +-('	 - 

	

-- ---	 -- -	 •-	 XJ	 \a 1 1	 -	 - 

The 'ote't al f.or	 tr.am function	 satifi-9 
-- Laplace 's equation	 = O Intioduci-ng the conditions 
of continuous and: irrotator'l flow, led s to 

--	 -	 -	 2 -	 -	 -	 a	 -- -a	 aK	 1	 -	 -	 --	 - - - - - - --	 -	 .4J	 -	 ---+	 -	 ( 1) 
-	 :- - - - 2Lax ôc .	 y a1 

- Therefore the secondapproximation to the general stream 
Yfunction

	

-	 -	 -	 -.	 -	 -	 -	 -	 - 

= 2 + 

can be found from the-:first -approximation \J =vi 0
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For adiabatic changes, to the order of Ma, 

= . l -LKQM 
P S 	 2	 ° j	 2 

and

ff2. =	 -	
2_	

1 - 

	

L	 2	 J	 2 

consequently

P	 K - i	 2 
—=l+-.---M 
P	 2 

where 

P	 fluid density at any point in the stream 

P 0	 fluid density in the undisturbed stream 

P 5	 fluid density at stagnation point 

The x velocity comp onent at any point in the flow is

(2) 
V 0	 P ay	 ay	 L3y	 2 

when terms having powers of 1,1 greater than the square 
are neglected.

ANALYSIS 

The potential stream function for a Rankine Oval 
symmetrically placed in a channel (reference 3) is 

= y + A tarf' r	 ----
_E ___ I 

	

L cosh	 - cosli r cos m 

where
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-t 

•sinh r si7!. 
2 tan1

1- COSJ-1 r cos
\B) 

and all angles must be taken to lie between o and TT. 

t	 thjckne	 of the P.ankiiie Oval 

S	 distance between source and sink producing Rankine 
Oval 

V 0	 velocity of undisturbed stream 

	

2i-rx	 2iry 1 =	 ,	 in =	 ,	 r 
H..	 ..	 H	 H 

H	 breadth of channel 

x	 coordinate measured along alxis.of the channel (major 
axis of oval) and havi.n, the oiiin midway between 
source and sink- - 

y.	 coor1inato measured perpendicular to the a±is of the 
dhanne1:• and havjr the origin midway between the 
tunnel 71a1ls. 

Applying equation (1) gives 

3 .... .	 C C	
_1
2

- 
rr	 IE	 :2E 

sin in i_ cosh 7,	 cosri 7,- cos in) 

	

D	 . 

	

V 	

'-1 
--- (cosh 1, .- cosh r cos in) sinh.1 + 	 cosh . 

V	 V	 Th	 D 
where	 •.	 V 	 . 

E = IL sinh r  

D = (cosh 1, - cosh r cos in) + (inh r sin in) 

To solve this p artial differential equation by Lamla5 
method, it is necessary to obtain cos in as a finite
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equation. 
e less than 1. 
e, where e 
equatioTi (1) 

series in D, r, and L from 
This imposes the limit (cosh 
For the sake of simplicity set 
is a small quantity. Consider 
having the form	 5 

41 =L Ih 
2i-r

the preceding 
- 1) must b 
cosh r= i'+ 

a solution of 

(i ) sin  

DP/2 

Then obtain the functions g (.) by equating those terms 
in the two expressions for 	 which have the same 

pors of D. If terms in e 2 . are neglected 

ii= ----I sin rn 

	

2n.	 - 

where 

I =	 +	
+(1	 cosh 2 t) 

-3/2 - 
D	 D 

( E 2	 ed0E.	 2'\	 ed FJ(	 cosh 2'\ 
---+ C1  )+..7_.(1 -	 /__(l - e) cos'-,!2 

2	 .	 D	 3	 /	 12D3 

-On the surface of the Rankine Oval 	 = 0, this provides 
the conditions necessary for evaluating the two constants 
d0 and d1 . For convenience the coordinates for the ends 
of the Oval axes can be used

m=U 

I	 o when	
H 

	

L	 -1 
in = o,	 t = cosh (-. + cosh r) 

This completely determines 	 and it is now possible to 
calculate the velocity at any point in the flow from equa-
tion (2) (and the analogous equation for the y velocity 
cor±ponent) 

The characteristic point on the Rankine Oval may be 
taken to be the point x = o, y = t/2. For this point 

	

(Vxo X=o 

=	

-	
+	 [	 --	 ._

(3)
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Lanla 1 s result for a circle is the special ca g e obtained 
from equation (3) by taking e = o. 

	

It can be shown that	 ..	 . 

S. = a (tIs) 4 	 (4) H 

and	 . 

1	 ?Y{1	 E}•.	 b(t/s)	 (5) 

x=o 

The most frequent applications have a thickness ratio, t, c	 le. s	 than O • 3• where	 ..	 .. 

t	 .t/..	 - 
C	

__.: 
!___ 1 

cot	 (t/5). 

therefore (4) would be negligible incomp.a.r.is .on--w-i-th 
since a.. and-- bare o1 the-same order. In such cases 
it is unnecessary to evaluate	 jJ1 and 

(!) 
=	 + M [{i4 £.	 (6) 

In reference 2 it is shown that for an ellipse having t/c 
less tha: C.3, in a channel with breadth so chosen as to 
give at	 =o the incompressible velocity past the ellipse 

of twice the free stream velocity,(!	 is very nearly 
•	

- 

2+3M . For 0.3 thickness ratio the velocity at x=o past 
a Rankine Oval is within 10 percent of that . past	 ellipse. 
In equation (cs) set	 M=o,	 and take	 - .. . . 

	

G

vx^-
	

=	 -	 = 2


	

o J 01 , 0	 L 
or



E
1 

D2 
then

fVx\	 2 
(--1 =2+3M 

Vo Y=0 

which gives a check on the validity of e quation (o). 

3. further simplification in the a pp lication of equa-
tion (6) is 

(E)-
2(t/s)[l+/6(1+t/s)2)j 

(1+ (t/5)) TT-

1-(t/s) 2( 

1 
3 s	 6 

Comparison of this value with table I, reference 3, shows 
that for lvI=o, t/5 less than 0.4, and s/H less than 0.5, 

the values for)
	

check within 0.1 percent. If Go n 
 x=o 

accuracy of 0.5 oercent is sufficient, e quatioh (7) can be 
reduced to

i-rc 

- _:	 [	 -------- .	 (a) 
\U -2i )	 12 

x=o	 1 - --
rrc	 Ire 

Setting equation (8) in (6) it follows that at zo 
the velocity past the Rankine Oval is 

(V	 --VoJ r1. + 

1 -	 12	 l - 

Tic

Ge 2 

	

+ 2 1 	 +	 ( 1 +	 1 }	 ( 9) 

	

L	 12	 IrCJ'J
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within the limits tic less than 0.30 and c/H less than 
1/4. From equation 

(9) 

it is seen that the velocity past 

the Rankine Oval at x=o in an infinite stream 	 = .0) 

is a function of Mach number, therefore in calculating the 
tunnel velocity correction it is necessary to consider the 
Mach number correction (reference i) 

(v=	 + ( + M)	 u)1	 (10) 
\ ,1x=o	

2t/ç-0	 1	 3t/ 

• Writing equation (9) in the form of equation (10) 

gives as the tunnel velocity correction for thin bodies 

Cl + MJ.hL?	 (ii) 

o x=o	 12	 Cl 

In reference 1., it i 	 'ionstrated that for a circle 

, 
iirc 

(Vo
-	 •= 1+-idL b	

12 

Tiis gives an indIcation o the magnitude of change in the 
multiplying constant of M	 for very thick bodies. 

In reference 3 it i.s shown that for c/H less than 
0.5, the percntage tunnel velocity correction for all 
points on the body is nearly constant. If this 1irrit is 
exceeded, the restriction of the tunnel walls causes a 
change in the effective shape of the body, because the 
velocity correction varies from point to point on the sur-
face of the cylinder. 

A comparison of equation (ii) with incompressible 
flow tunnel . velocity correction as given in reference 4 
shows that 

(.	 = (. + M	 &)	 (12) 
\V o )compressible	 \	 WO incompressible 

The present development neglects powers of M greater 
than the square.
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The mathematical difficulties of extending the pres-
ent analysis to. higher Mach numbers are formidable. 
Eowever, an investigation of the flow characteristics at 
Mach numbers a pproaching 1 suggests an extension of equa-
tion (12). To this end, consider the two-dimensional 
flow pat a thin symmetrical airfoil in free air. The 
conditions of conservation of mass., and adiabatic com-
pression lead to

Y-1	 2 

=± a [: _.] (.	 (13) 

1 + ----
2 

where	 l' and	 are, resective1y, the distances be- 
tween the same two stream lines ahead of the airfoil and 
at the position of maximum velocity over the airfoil. The 
velocities at these p ositions corresrond to the Mach num-
hers M 0 and M.	 Y i5 the ratio of the specific heats. 

The maximum velocity past the surface of a thin yn1-

mstrical section is of the same magnitude as the velocity 
ahead of the section. Therefore, for small Mach numbers. 
equation (13) indicates that the distances between stream-
lines at these two -positio n s are inversel y proport tonal 
to their local Mach numbers. This corresponds to a natural 
contraction of the streamlines.

1 
A the Mach numbers approach 1, - - approaches l 

To demonstrate this let	 0 

and M=l-3 

where	 c and	 3	 are	 small	 quantities. Then, since	 '7 =	 1.4 
for	 air, equation	 (13)	 can be written 

L F:)1 3 	 (L:(_z L 1	 ± 0.2	 (1	 -	 2€) i	 ) l -
-

The physical significance of this relation i5 that in the 
vicinity of the velocity of sound, the streamlines in 
p assing from the undisturbed stream over the airfoil sec-
tion would not contract in free air. The presence of 
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tunnel walls imp oe5 a contraction, which alters the flow 
markedly'. To the order of accuracy of this re p-ort, 1 + 

is the series equivalent to '__L_	 and the latter form 
1 -	 ... 

expresses the large magnitude of the, compressibility cor-
rection. when M approaches 1.	 Therefore ) 'it seems advis-
able to write equation (12) 

= _ (f 
2


compressible	 • 1 -	 incompressible. 

This relation was derived for a thin Rankine Oval 
and indicates the order of correction for a thin symmet-
rical airfoil section at zero angle of attack in a two-
dimensional wind tunnel. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett .Field Calif. 
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